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Summary

Two analytical mdtodologies are used for the analysis of the NMEaaf alginates.

The samples are shown to be compositionallyrbgeneous, and the NMRta can be
treated with either a discrete or a canbus gatistical model. Thenfractionated

alginate ifound to comain at leastour components: two mostly homopolymer blocks,
one somewhat alternatingmolymer block, and one or more random copolymer blocks.
Other infomation available includes chemical composition distrdoutcomponent
statistics and reactigurobalilities, and average M and G block lengths.

Introduction

Alginates are a family of polysaccharides extradtech brown algae and used
commercially as thickeners, binders, encapsulants, stabilizerdpfilmng agents, and
suspending agents (1-4). Struetily, they are unbranched copolymers of (1-4)-linked 3-
D-mannuronicacid (M) anda-L-guluronicacid (G) residues.
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These comonomers are known to form both blockyaltenating sequences in
alginates, and the microstructure is essefiaiheir propeties. For example, the
selectivityfor cations (and thereby the geirming propeties) has beenoerelated with

the content of the G-blocks. In contrast, chain flexibility is enhanced with increased M
content (1,2).

The commonly accepted technique tadst polymemicrostructure is NMR (5-8).
Alginates have been extensively studied by N{@R0). Grasdlen, Larsen, Smidsrod,
Skjak-Braek, and their coworkers have done most of the work in this area (10-15). They
have provided the sgtral assignments and also recommended a computgtiacaidure
to extract structurahiformation. Thus,;H NMR can be used to compute composition,
diad sequences, and G-centered triads,“*@NMR to calculate both M-and G-centered
triads. The calculatioprocedure involves the use of Berti@n, first- and seand-order
Markovian models (1,2,15).

Recently, severalovel models have been developed for contjposlly
heterogeneous fgsns, primarily vinyl polymerg21-29). In this work thesalternative
models are used to study the conmposal heterogeeity of alginates.

Statistical Models
The application of Beoulian and Makovian models to NMR ata is well documented
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(5,6,21). Whereamechanistically the polymeropagtion models may not be suitable
for alginates(15,30), such models are useful as an aitalframevork to celineate
polymer microstructure. The Bernban (B) model corresponds to randoitagement of

M and G residues along the polymer chain and isadtarized by one parameterge

P, the probality of M placement on the cha). The first-order Markoviari\{1) model
posits that the nearest neighbor has agcethn nonomer placement and is characterized
by two parameters (P and R,,, corresponding to thdacement of G next to M, and the
placement of M next to G, respectiyelThe second-order Markoviam) model
assumes that the next two neighbors have a&ttedi the placement and is characterized
by four paameters. It has beenparted that in general the distribution of M and G along
the polymer chains for algates canot be described by Berrlban statistics except in
some fractionated sampléls2,12). The first-order Markovian model has been found to
be valid in many cas€$2,18,19). For a wide range of algtes, the semd-order
Markovian model was reported to produce the best fit to the observed B4R H).

In recent years, there has been an increasing awareness of the effects of
compositional heterogeity on the NMR datéor many polymeric syems(21-29). At
leastfour types of compagonal heterogeeity have been identifie@@9): (1) $atistical
heterogeanity, arising from thetatistical fluctuations of@polymer compasion; (2)
conversion kterogeeity, which may result when the comonomers have different
reactivity ratios, therebgroducing different compdsons at different conversions; (3)
multi-state heteogereity, where the polymer is composed of several polymer
components; and (4) processtérogerity, which may come about through iadions in
reactionprocess conditions, e.gemperature fluctuations, inadequate stgridead
volume in reaair, and gel eféct.

The theory and themethodologies involved witbach type of hetegereity have
been developed, and many polymers have been studied, demonstrating their utility in the
analysis of NMR daté21-29). Thesenethodologies should be dmable to alginates as
well. For alginates, these treatments cagioeiped into two kinds, depending on the
manner in which the chemical composition distribu{iG&D) is represented: continuous
functions and discrete cqranents.

In the case of continuous fcion treatments, the perbed Markovian models
have been developed, using symmefiection (26), non-symetricfunctions (27), or a
function-free approach (27). For convenience, the expgaigmmodified Gaussian
(EMG) function will be used in thisavk. Thus, the Berndlian probalility is
represented not by one value XBut by a distribution:
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where z is the Berndlian probabhlity, N the areaunder the Gaussiag,the standard
deviation, T the skew factor, z' the dummy variable of intggm, and P the average
value of Bernollian probalility wit hout the expondial modification.

For the EMG models, the equations for polymer contipos diad, triad, and
higher n-ad sequences have been previously derived (27). Thémexply observed
sequence intensities can be fitted to the theoretical sequence intensities to,platain P
andt. Although the Berndlian probalility is shown in Equation 1, the EM{ér the
first-order Markovian probalities can be similarly xpressed (27).

In the discrete coponent approaches (23-25), the polymer is considered to be the
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mixture of two or more discrete cgmnents. No assumption is made of the nature of the
components: they may be segi@r chains or joined together as blookalymers. In this
case, each experimentally observed sequence (conmpsiiad, triad, or higher n-ad) is
the weighted average of the corresponding sequen@distbé conponents.

I = Zﬂ;wa L, 2)

where |is the total intensityor sequence i, yis the weight fractiofior componentr,
and |y is the intensity for sequence i and comporereveral computational
methodologies have been developed for this analysis (22-25). In this work, both
Bernodlian and the firstorder Markovian models i be used.

Results and discussion

From previous studies of heterogeneous polymers (21,27), it is known that the higher the
n-ad sequences being examined, the more discriminating are the data towards the models.
Grasdalen et a(12,13) have publishecethiled NMR triad datéor an algirate extracted

from Laminaria digitataand for four factions obtainetrom it. These dta (summarized

in Table 1) are highly suited as a test dasenalysis. In this work MG and GM diads

are combined and called simply MG. Likew®IG denotes both MMG and GMM

triads, and GGM denotes both GGM and MGG triads.

Whole Polymerg~or the purpose dllustration, the analysis of the NMRath of the
whole polymer is given in detail here. The observed data are first fitted to the
Bernodlian and the firstorder Markovian models (Table 2, columns 3 and 4).rmban
deviations are largeuggesting that these models are matllly gppropiate for these dta.

The use of discrete two-cguanent models gives much lowmean deviations.
The two-componer8/B model provides a good fit to thata (Table 2, columB). As
expected, the two-coponent M1/M1) model gives an even better agreement with the
observed data than the two-cpoment B/B) model. The continuous EMG fations also
produceacceptablgoodness-of-fitthean deviatior 1.0%, comparable to experental
precison). Although the EMGVI1 function introduces one aitidnal parameter, the
improvements in the fit over EM@®/function is only marginal (mean deviation 0.8
versus 0.9).

Using the values of the EMB/unction, we can plot the eimical composition
distribution (CCD) curve for the whole polymer (Figure 1a). The coitipos
heterogeanity may also be represented igiie 1c by two diseteM1/M1 components.

It is important to note that the same data can be represented in two different ways. For a

Table 1. Triad sequences for alginates obtained from Laminaria digitata and four fractions

sample MMM MMG GMG MGM GGM GGG refs.

whole polymer 38 16 6 10 8 22 12
fractionL, , 22 28 11 11 28 0 i2
fraction MG 12 22 22 27 12 5 12
fraction M 61 22 0 10 2 5 12
fraction G 255 5 25 0 4 86 12,13
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Table 2. Fitting of the whole polymer NMR data to different models

tiad T, T.B I ML I, (BB I, MM I, (EMGB) I (EMGMI)
MMM 38 38.0 38.0 38.0 38.0 38.0 35.7
MMG 16 28.9 18.3 16.4 16.0 18.1 16.0
GMG 6 5.5 2.2 5.1 6.0 4.3 6.0
MGM 10 14.5 3.1 8.2 10.0 9.1 9.8
GGM 38 11.0 16.5 10.3 8.0 8.5 8.3
GGG 22 2.1 22.0 22.0 22.0 22.0 24.2
mean dev. 6.8 3.6 0.9 0.0 0.9 0.8
P=0.724 Pg=0.272 comp.1 comp.] P=0.643 P=0.695

Pp;=0.194 w,=0.344 w,=0.344 c =0.294 P,=0.437
P\=0.143 Pg=0.144 1©=-0.039 o =0.367
Py=0.996 17 =-0.042
comp.2 comp.2
w,=0.656 w,=0.656
Py=0.833 Pgu=0.970

Py,=0.174
Table 3. Fitting of the NMR data of polymer fractions to different models
Fraction L., , Fraction MG
triad Lol ML I MyM1 I EMGB L, I.M1 I MiMI I EMG/B
MMM 22 220 22.0 22.0 12175 12.0 14.7
MMG 28 28.0 27.9 24.0 22 256 220 22.0
GMG 11 39 9.9 14.0 22 220 22.0 15.8
MGM 11 128 14.2 12.0 27 27.0 27.0 11.0
GGM 28 203 19.4 28.0 12 156 12.0 31.5
GGG 0 8.0 6.6 0.0 5 23 5.0 5.0
mean dev. 33 33 1.3 2.4 0.0 7.4
P5u=0.558 comp.1 P,,=0.555 Pgu=0.776 comp.1 P,,=0.485
Py;=0.389 w,=0.978 ¢ =0.010 Py=0.632 w,=0.801 0 =0.010
Pou=0.594 1 =0.045 Pu=0.856 ©=0.040
Py=0.414 Py=0.700
comp.2 comp.2
w,=0.022 w,=0.199
P;=0.984 Pp=0.268
Py,=0.000 Py =0.179
Fraction M Fraction G
iad LI, ML I MUMI I EMGB [L,,I M1 1 MMl I  EMGB
MMM 61 61.0 61.0 61.0 25 25 2.5 0.6
MMG 22 220 19.8 21.6 50 3.7 4.0 4.9
GMG 0 20 1.6 0.6 25 1.4 1.7 2.0
MGM 10 112 10.5 10.8 0 0.1 1.7 2.5
GGM 2 35 2.0 1.2 4 63 4.0 4.0
GGG S 03 5.0 4.8 86 86.0 86.0 86.0
mean dev. 1.6 0.7 0.5 0.8 0.6 0.8
P;=0.865 comp.1 P,,=0.955 P5u=0.035 comp.1 P,,=0.072
Py=0.153 w,=0.931 ¢ =0.006 Py=0.427 w,=0.861 0=0.160
Pg=0.921 ©=-0.123 P;,=0.005 t=0.003
Pyy=0.142 Py46=0.699
comp.2 comp.2
w,= 0.069 w,=0.138
P5=0.019 P5\=0.528

P,,=0.056 Py,c=0.434
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Figure 1. Calculated chemical composition distribution (CCD) for alginate isolated from
Laminaria digitata: (a) continuous function approach, (b) results from fractionation/NMR
analysis, (c) two-component approximation (discrete model). For ease of presentation, each
component is shown as separate polymer chains. The bar widths are arbitrarily set.
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Figure 2. Calculated chemical composition distribution (CCD) functions for alginate isolated
from Laminaria digitata and its fractions.

251



252

Table 4. Summary of the parameters for the exponentially modified Gaussian (EMG/B)
Bernoullian model

sample Py o T
whole polymer 0.643 0.294 -0.039
fraction L, 4 0.555 0.010 0.045
fraction MG -- = -
fraction M 0.955 0.006 -0.123
fraction G 0.072 0.160 0.003

polymer with a complex microstructure, often the NMR data on the whole polymer alone
do not enable us to tell if one representation is preferred over another. Additional data are
needed; one possibility is to examine the polymer fractions.

Polymer FractionsGrasdalen's da{d2,13) on the algite fractions can be subjected to
a similar analysi$or all six models. lrorder to save ge, only the results of thél
model, the two-componeM1/M1 model, and the EM®& model are shown in Table 3.
It is of interest to note that Fraction lcannot beifted satisfactorily to a discrete two-
component moel; only the contiuous EMGB function provides a fair agement with
observed data. In contrast, Fraction M@meat be ftted to the contiuous EMG

functions; however, the two-component determodels give excellent agreements.
Fraction M and Fraction G can be fitted to either a discrete or ancons model.

A summary of the parametdis the continuous models is shown in Table 4.
These parameters can be used to plot the calculated @@&sqFigure 2). As exated,
the G fraction is centered at high G composition with a tail toward the londGlde M
fraction is centered at the high M compasititailing towards the low M. Fraction, |
has a composition distribution near the middle with a skew. Also shown in Figure 2 is
the computed CCD of the whole polymer.

As instructive as the CCDucves are, they do not providetdiled nformation
on the blocky and the alternating structures expefctealginates. Suchnformation can
be obtainedrom the discete-conponent analysis. The results of the two-ctenpent
M1/M1 models are summarized in Table 5. Note tbaeach corponent,

P.. + P <1, tendency to form blocks;

P.. + P,c 01, nearly random comonomeapement;

P.., + P, > 1, tendency to alternate.

Thus, each of the Fractions M and G consists of an almusdbma M/G polymer

component and ammost blocky M/G component. In contrast, &ction MG contains a
blocky component (with M and G blocks), aslixas a component that shows a tendency

to alternate. The whole polymer, being a mixture of all these fractions, then contains at
leastfour components: a predominantly M block, a predominantly G block, a somewhat
alternating M/G corponent, and one or more random M/G components (Figure 1b). This
finding is consistent with the broad CCD displayed in Figure 1a.

Note that the triad datfar the whole polymer also produced a good fit with the
discrete two-component model (Table 2). Since we now know that the whole polymer
contains at leagbur components covering a broad composal range, the two-
component model for the whole polymeciearly inadequate. The observed triad data
for the whole polymer are the averagesalbthe conponents. When only two
components are used to fit thatd, some smearing of th&armation becomes
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unavoidable. Thus, although a good fit is achieved, the Markovian plitkalfP,, and
P.,) are averages and do not necessarily providenrdtion on microstructure. In this
connecton, the NMR analysis of urdctionated alginate using simple emretwo-
component Berndlian or Markovian models should be carried out with care.

The discrete model does permit us to estimate the block |efogtte M and
the G sequences,(and n, respectivel). The average block lengths are (6,12):

n, = 2O n, = 2 3)
MG) MG)
For theM1 model, these correspond to
— 1 — 1
ng = — Ry = — @)
Pou " Py

The results are shown in Table 6. The block length is another measure of the alternating
or blocky tendency of the components. Thus, whéH.nthe component elternating,

and when n >> 1, it is blocky. The oedirblock lengthfor each sample is obtained by

taking the weighted average of the two componentg: <rkwpP, ./ZwP, . P,,,, and

<n,> =XwpP,,/ZwP,.P.,. The calculated overall block lengths argaod
agreement with the observed block lengths, psrted by Grasdalen, et al (12).

Experimental

The NMR triads were analyzed using computerized analytpqaoaches described
previously (23-27). Thetting of the data to thB and theM1 models was achieved with
program TRIAD. The two-component models watte#l with theprogram TRIADX

(23). The continuous EMG fations were fitted with thprogram PERTEMG (27). All
programs were wften in QuickBASIC andun on a personal computer.

A referee pointed out that for some aklgfim samples the experimental data may
contain erors due to inhererimitations in quantitative NMR measuremeritsleed,
when errors are present it is important to include mata (kg., from polymer factions)
in the analysis in order to mmize uncertainties and maximizefermation content.

Table 5. Summary of the parameters for the two-component M1/M1 model

component 1 component 2
sample W) Pom(1) Pmc(1) tendency W Pem(2) Pmo(2) tendency
whole polymer 0.656 0.970 0.174 mixture 0344 0.144 0.996 mixture

fraction L4 -- - -- - -- --

fraction MG  0.801 0.856 0.700 alternating 0.199 0.208 0.179 blocky
fraction M 0931 0921 0.142 npearrandom 0.069 0.019 0.056 blocky
fraction G 0.139  0.528 0.434 nearrandom _ 0.861 0.005 0.699 blocky

Table 6. Average block lengths for the individual components and for the whole samples

component | component 2 overall sample (calc)
sample Wi DG Tm W2 Ng Ny <G>  <nm>
whole polym 0.656 1.03 5.75 0.344 694 1.00 286 429
frac. MG 0.801 1.17 143 0.199 4.81 5.59 1.22 1.49
frac. M 0931 1.09 7.04 0.069 526 179 1.12 7.05

frac. G 0.139 1.89 2.30 0.861 200 1.43 19.0 2.23
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Conclusions

In this work two analgical mehodologies are proposed tedt the NMR data of
alginates. The chemical composition distributiongpraxmated by either discrete
components or expongally modified Gaussiafunctions. The methodologies give
complementaryrnformation on the microstructure of the polysaccharide. With these
methodologies, one type of algite was shown to be compositionally metgneous with
at leasffour sepaate polymeric comonents. Caution is advised when the actionated
alginate is analyzed by NMR and statistical models. It is preferable to fractionate the
polymer and include the NMR data of the fractions in the analysis.
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